Technology
Evaluating the Trigonometric Expression: Tan(2 tan^-1(1/5) - π/4)
Evaluating the Trigonometric Expression: Tan(2 tan^-1(1/5) - π/4)
Understanding and evaluating trigonometric expressions is a fundamental skill in advanced mathematics. One such expression is tan(2 tan^{-1}(1/5) - frac{pi}{4}). This article will walk you through the process of evaluating this expression step-by-step, using various trigonometric identities and properties.
Step-by-Step Evaluation
Let's break down the expression into smaller, manageable parts and utilize the double angle formula for tangent and the tangent subtraction formula.
Step 1: Introducing the Variable
Let x tan^{-1}(1/5). This implies:
tan x frac{1}{5}
Step 2: Applying the Double Angle Formula
The double angle formula for tangent is:
tan 2x frac{2 tan x}{1 - tan^2 x}
Substituting tan x frac{1}{5}, we get:
tan 2x frac{2 cdot frac{1}{5}}{1 - left( frac{1}{5} right)^2} frac{frac{2}{5}}{1 - frac{1}{25}} frac{frac{2}{5}}{frac{24}{25}} frac{2}{5} cdot frac{25}{24} frac{10}{24} frac{5}{12}
Step 3: Using the Tangent Subtraction Formula
The tangent subtraction formula is:
tan (A - B) frac{tan A - tan B}{1 tan A tan B}
Let A 2x and B frac{pi}{4}. Since tan(frac{pi}{4}) 1, we have:
tan(2x - frac{pi}{4}) frac{tan 2x - 1}{1 tan 2x cdot 1}
Substituting tan 2x frac{5}{12}, we get:
tan(2x - frac{pi}{4}) frac{frac{5}{12} - 1}{1 frac{5}{12}} frac{frac{5}{12} - frac{12}{12}}{frac{12}{12} frac{5}{12}} frac{frac{-7}{12}}{frac{17}{12}} frac{-7}{17}
Thus, the final result is:
boxed{frac{-7}{17}}
Alternative Methods and Simplifications
There are alternative methods to solve this problem without using the double angle formula directly. Here's a simplified version using the trigonometric identity:
tan(A - B) frac{tan A - tan B}{1 tan A tan B}
Applying this identity:
tan(2 tan^{-1}(1/5) - frac{pi}{4}) frac{tan(2 tan^{-1}(1/5)) - 1}{1 tan(2 tan^{-1}(1/5))}
Using the two-argument arctangent formula:
tan(2 tan^{-1}(x)) frac{2x}{1 - x^2}
Substituting x frac{1}{5}, we get:
tan(2 tan^{-1}(1/5)) frac{2 cdot frac{1}{5}}{1 - left( frac{1}{5} right)^2} frac{frac{2}{5}}{1 - frac{1}{25}} frac{frac{2}{5}}{frac{24}{25}} frac{2}{5} cdot frac{25}{24} frac{10}{24} frac{5}{12}
Now, using the tangent subtraction formula:
tan(2 tan^{-1}(1/5) - frac{pi}{4}) frac{frac{5}{12} - 1}{1 frac{5}{12}} frac{frac{5}{12} - frac{12}{12}}{1 frac{5}{12}} frac{frac{-7}{12}}{frac{17}{12}} frac{-7}{17}
Therefore, the final result remains:
boxed{frac{-7}{17}}
Key Trigonometric Identities and Properties
In the evaluation of the given expression, we utilized several key identities and properties:
Double Angle Formula for Tangent: (tan 2x frac{2 tan x}{1 - tan^2 x}) Tangent Subtraction Formula: (tan (A - B) frac{tan A - tan B}{1 tan A tan B}) Two-Argument Arctangent Formula: (tan(2 tan^{-1}(x)) frac{2x}{1 - x^2})Understanding and applying these identities and properties correctly is crucial to solving such trigonometric expressions.
Practice and Resources
To further enhance your understanding and proficiency, you can practice similar problems, review the relevant sections in your textbook, and explore additional resources such as online tutorials and quizzes. The more you practice, the better you will become in tackling complex trigonometric expressions.
-
Differences Between Business Analytics and Data Science: Uncovering the Key Distinctions
Differences Between Business Analytics and Data Science: Uncovering the Key Dist
-
Why Startups Love Slack: Best Practices and Examples
Why Startups Love Slack: Best Practices and Examples Many startups across variou