Technology
Finding the Inverse Laplace Transform of 1/(s^2 s 2)
How to Find the Inverse Laplace Transform of ( frac{1}{s^2 s 2} )
The Inverse Laplace Transform is a key operation in the analysis and control of linear time-invariant systems, often used in electrical and mechanical engineering, as well as in solving differential equations. Here, we will guide you through finding the inverse Laplace transform of the function ( frac{1}{s^2 s 2} ).
1. Completing the Square
To solve the inverse Laplace transform, we first need to complete the square for the denominator.
tWrite the denominator in the form ((s a)^2 b^2): t t ttStart by adding and subtracting a constant to complete the square. In this case, add and subtract (frac{1}{4}): tt tt[ s^2 s 2 s^2 s frac{1}{4} - frac{1}{4} 2 ] ttSimplify the expression: tt tt[ s^2 s 2 left(s frac{1}{2}right)^2 frac{7}{4} ] ttThus, the function can be written as: tt tt[ frac{1}{s^2 s 2} frac{1}{left(s frac{1}{2}right)^2 frac{7}{4}} ] t t2. Using the Table of Laplace Transforms
Using the table of Laplace transforms, the inverse transform of a function in the form (frac{b}{(s a)^2 b^2}) is given by:
tThe general form of the inverse Laplace transform is: t t tt tt[ mathcal{L}^{-1}left{frac{b}{(s a)^2 b^2}right} e^{-at} sin(bt)u(t) ] ttWhere (u(t)) is the unit step function, which is 0 for (t t t tCompare this form with our function: t t ttHere, (a frac{1}{2}) and (b sqrt{frac{7}{4}} frac{sqrt{7}}{2}). ttThus, the inverse Laplace transform is: tt tt[ mathcal{L}^{-1}left{frac{1}{(s frac{1}{2})^2 left(frac{sqrt{7}}{2}right)^2}right} e^{-frac{t}{2}} sinleft(frac{sqrt{7}}{2} tright) u(t) ] t tTherefore, the final result is:
[ mathcal{L}^{-1}left{frac{1}{s^2 s 2}right} frac{2}{sqrt{7}} e^{-frac{t}{2}} sinleft(frac{sqrt{7}}{2} tright) u(t) ]
3. Detailed Steps
Here's a more detailed breakdown of the steps:
tComplete the square: t t tt tt[ s^2 s 2 left(s frac{1}{2}right)^2 frac{7}{4} ] t t tUse the inverse Laplace transform formula: t t tt tt[ mathcal{L}^{-1}left{frac{1}{left(s frac{1}{2}right)^2 left(frac{sqrt{7}}{2}right)^2}right} e^{-frac{t}{2}} sinleft(frac{sqrt{7}}{2} tright) u(t) ] t t tMultiply by the constant factor: t t tt tt[ mathcal{L}^{-1}left{frac{1}{s^2 s 2}right} frac{2}{sqrt{7}} e^{-frac{t}{2}} sinleft(frac{sqrt{7}}{2} tright) u(t) ] t tConclusion
By following this method, you can easily find the inverse Laplace transform of the function (frac{1}{s^2 s 2}). This technique is widely applicable and can be used in various engineering and scientific contexts where the Laplace transform is used.
Keywords
Laplace Transform, Inverse Laplace Transform, Unit Step Function
-
Why the US Does Not Use .US Domain and Prefers .COM, .ORG, and .GOV
Why the US Does Not Use .US Domain and Prefers .COM, .ORG, and .GOV In the evolv
-
The Power of a Single Word: How A Single Letter Can Reshape Your Online Presence
The Power of a Single Word: How A Single Letter Can Reshape Your Online Presence