Technology
Projectile Motion Analysis for Initial Velocity of 20m/s at 30 Degrees
Projectile Motion Analysis for Initial Velocity of 20 m/s at 30 Degrees
To analyze the motion of a projectile launched with an initial velocity of 20 m/s at an angle of projection of 30 degrees, we can use standard projectile motion equations. This article will provide the step-by-step solution to determine the range, maximum height, and total time of flight for this scenario.
1. Range R
The range of a projectile is given by the formula:
R frac{v_0^2 sin 2theta}{g}
where:
g is the acceleration due to gravity, approximately 9.81 m/s2 θ is the angle of projectionSubstituting the given values:
R frac{20^2 sin 2 times 30^circ}{9.81}
frac{400 times sin 60^circ}{9.81}
frac{400 times frac{sqrt{3}}{2}}{9.81}
frac{200sqrt{3}}{9.81} approx frac{346.41}{9.81} approx 35.32 text{ m}
Therefore, the range R ≈ 35.32 m.
2. Maximum Height H
The maximum height of a projectile is given by the formula:
H frac{v_0^2 sin^2 theta}{2g}
Substituting the given values:
H frac{20^2 sin^2 30^circ}{2 times 9.81}
frac{400 times left(frac{1}{2}right)^2}{19.62}
frac{400 times frac{1}{4}}{19.62}
frac{100}{19.62} approx 5.1 text{ m}
Therefore, the maximum height H ≈ 5.1 m.
3. Total Time of Flight T
The total time of flight for a projectile is given by the formula:
T frac{2v_0 sin theta}{g}
Substituting the given values:
T frac{2 times 20 times sin 30^circ}{9.81}
frac{40 times frac{1}{2}}{9.81}
frac{20}{9.81} approx 2.04 text{ s}
Therefore, the total time of flight T ≈ 2.04 s.
Summary of Results
Range R: ≈ 35.32 m Maximum Height H: ≈ 5.1 m Total Time of Flight T: ≈ 2.04 sAdditional Calculations
Let's explore the vertical and horizontal components of the motion in more detail:
1. Vertical Motion
For vertical motion, we can use the following equation:
v^2 u^2 2as
At the maximum height, the vertical velocity v 0 :
0 (20 sin 30)^2 - 2 times g times s
5 g times s
s frac{5}{g}
If g 10 text{ m/s}^2, s 0.5 text{ m}. If g 9.81 text{ m/s}^2, s approx 0.51 text{ m} (2dp).
This is the maximum height.
For the total time of flight, we use:
s ut frac{1}{2}at^2
0 20 sin 30 t - frac{g}{2} t^2
0 t (10 - frac{g}{2} t)
This gives us t 0 or t frac{20}{g}.
Vertical distance: 0 at the start and when t frac{20}{g}. If g 10, t approx 2 text{ seconds}. If g 9.81, t approx 2.04 text{ seconds} (2dp).
2. Horizontal Motion
For horizontal motion, we use:
s ut frac{1}{2}at^2
where a 0:
s 20 cos 30 t
If t 2 text{ seconds}, s 20 sqrt{3} approx 34.64 text{ m} (2dp).
If t 2.04 text{ seconds}, s approx 35.35 text{ m} (2dp).
This is the range.
Overall, the projectile motion analysis provides detailed insights into the range, maximum height, and total time of flight for a projectile launched with an initial velocity of 20 m/s at 30 degrees.
-
The Most Complex Software Developed in .NET/C# Exploring Air Defence Command and Control Systems
The Most Complex Software Developed in .NET/C#: Exploring Air Defence Command an
-
Keys to the Next Generation: Wisdom from Years in Business
Keys to the Next Generation: Wisdom from Years in Business Over the course of my