Technology
Proving Complex Logarithmic Relationships Using Euler’s Formula
Proving Complex Logarithmic Relationships Using Euler’s Formula
Understanding how to manipulate and prove complex logarithmic relationships can be challenging. This article guides you through the process using Euler's formula to simplify arguments and find a common ground for solving complex equations. We'll explore the proof of how to derive a specific logarithmic relationship involving square roots and complex numbers.
Introduction to Euler's Formula
Euler's formula, (e^{itheta} cos(theta) isin(theta)), is a fundamental tool in complex analysis. It allows us to express complex numbers in terms of exponentials, making it easier to manipulate and solve complex equations.
Problem Setup
Given the equation:
[frac{1 - sqrt{i}}{1 sqrt{i}}]
We will simplify and find the logarithm of this expression. Similarly, we will work on:
[frac{1 - isqrt{i}}{1 isqrt{i}}]
and then compare the logarithms of both expressions.
Simplifying the Expressions
Let's start by simplifying the first expression:
[frac{1 - sqrt{i}}{1 sqrt{i}} frac{1 - e^{frac{ipi}{4}}}{1 e^{frac{ipi}{4}}}]
Multiplying by the conjugate to rationalize the denominator:
[ frac{(1 - e^{frac{ipi}{4}})(1 - e^{-frac{ipi}{4}})}{(1 e^{frac{ipi}{4}})(1 - e^{-frac{ipi}{4}})} frac{1 - e^{frac{ipi}{4}} - e^{-frac{ipi}{4}} e^{frac{ipi}{4}} e^{-frac{ipi}{4}}}{2} frac{1 - 2cos(frac{pi}{4}) 1}{2} frac{2 - 2cdotfrac{sqrt{2}}{2}}{2} frac{2 - sqrt{2}}{2}]
Simplifying further:
[ frac{2 - sqrt{2}}{2} frac{2sqrt{2} - 2}{2sqrt{2}} frac{sqrt{2} - 1}{sqrt{2}}]
Thus, taking the logarithm:
[ilogleft(frac{1 - sqrt{i}}{1 sqrt{i}}right) ilogleft(frac{sqrt{2} - 1}{sqrt{2}}right) ileft(log(sqrt{2} - 1) - frac{pi}{2}iright) log(sqrt{2} - 1) frac{pi}{2}]
Second Expression
Now, let's handle the second expression:
[frac{1 - isqrt{i}}{1 isqrt{i}} frac{1 - e^{frac{3ipi}{4}}}{1 e^{frac{3ipi}{4}}}]
Again, rationalizing the denominator with the conjugate:
[ frac{(1 - e^{frac{3ipi}{4}})(1 - e^{-frac{3ipi}{4}})}{(1 e^{frac{3ipi}{4}})(1 - e^{-frac{3ipi}{4}})} frac{1 - e^{frac{3ipi}{4}} - e^{-frac{3ipi}{4}} e^{frac{3ipi}{4}} e^{-frac{3ipi}{4}}}{2} frac{1 - 2cos(frac{3pi}{4}) 1}{2} frac{2 - 2cdotfrac{sqrt{2}}{2}}{2} frac{2 - sqrt{2}}{2}]
Simplifying further:
[ frac{2 - sqrt{2}}{2} frac{2sqrt{2} - 2}{2sqrt{2}} frac{sqrt{2} - 1}{sqrt{2}}]
Thus, taking the logarithm:
[ilogleft(frac{1 - isqrt{i}}{1 isqrt{i}}right) ilogleft(frac{sqrt{2} - 1}{sqrt{2}}right) ileft(log(sqrt{2} - 1) - frac{pi}{2}iright) log(sqrt{2} - 1) frac{pi}{2}]
Comparing the Logarithms
Now, we compare the logarithms:
[ilogleft(frac{1 - sqrt{i}}{1 sqrt{i}}right) - ilogleft(frac{1 - isqrt{i}}{1 isqrt{i}}right) ileft(log(sqrt{2} - 1) frac{pi}{2}right) - ileft(log(sqrt{2} - 1) frac{pi}{2}right) -ileft(log(sqrt{2} - 1) - frac{pi}{2}right)]
This simplifies to:
[ -ileft(log(sqrt{2} - 1) - frac{pi}{2}right) ileft(frac{pi}{2} - log(sqrt{2} - 1)right)]
Final Calculation
Finally, we incorporate the final value:
[frac{1}{4isqrt{i}} frac{1}{4}e^{-frac{3pi}{4}} -frac{1 - i}{4sqrt{2}}]
Thus, the full calculation becomes:
[frac{1}{4isqrt{i}}left(ilogleft(frac{1 - sqrt{i}}{1 sqrt{i}}right) - ilogleft(frac{1 - isqrt{i}}{1 isqrt{i}}right)right) -frac{1 - i}{4sqrt{2}} cdot ileft(frac{pi}{2} - log(sqrt{2} - 1)right) -frac{1 - i}{4sqrt{2}} cdot ileft(frac{pi}{2} - frac{pi}{2}right) -frac{1 - i}{4sqrt{2}} cdot 2left(frac{pi}{2} - log(sqrt{2} - 1)right)]
This further simplifies to:
[ -frac{1 - i}{4sqrt{2}} cdot 2left(frac{pi}{2} - log(sqrt{2} - 1)right) -frac{1 - i}{4sqrt{2}} cdot 2left(frac{pi}{2} - log(1 - frac{1}{sqrt{2}})right) -frac{1 - i}{4sqrt{2}} cdot 2left(frac{pi}{2} log(frac{1}{sqrt{2} - 1})right)]
Finally:
[ -frac{1 - i}{4sqrt{2}} cdot 2left(frac{pi}{2} - log(frac{1}{sqrt{2} - 1})right) -frac{pi}{4sqrt{2}} - frac{pi}{2sqrt{2}} frac{pi - 2log(sqrt{2} - 1)}{4sqrt{2}} -frac{pi - 2log(frac{3}{2sqrt{2}})}{4sqrt{2}}]
Thus, the final boxed result is:
[boxed{-frac{pilog(3) - 2sqrt{2}}{4sqrt{2}}}]
-
Unveiling the Atom: How Scientists Understand Its Inner Structure
Unveiling the Atom: How Scientists Understand Its Inner Structure Atoms are the
-
Robotic Arm vs CNC Milling: Exploring Suitability for Component Manufacturing
Robotic Arm vs CNC Milling: Exploring Suitability for Component Manufacturing Wh