Technology
Proving That ( tan 45^circ / 2 sqrt{3} - 2sqrt{2} ) is Incorrect
Proving That ( tan 45^circ / 2 sqrt{3} - 2sqrt{2} ) is Incorrect
Introduction
The statement that ( tan 45^circ / 2 sqrt{3} - 2sqrt{2} ) is incorrect. This article will reveal the correct proof using trigonometric identities and the half-angle formula, demonstrating that the correct value is ( tan 22.5^circ sqrt{2} - 1 ).
Half-Angle Formula for Tangent
To prove that ( tan 45^circ / 2 sqrt{3} - 2sqrt{2} ) is incorrect, we can use the half-angle formula for tangent:
tan(θ/2) (1 - cos θ) / sin θ
Step 1: Substituting ( θ 45^circ )
Let ( θ 45^circ ). We know that:
cos 45^circ 1 / sqrt{2}
sin 45^circ 1 / sqrt{2}
Step 2: Substitution
Substitute ( θ 45^circ ) into the half-angle formula:
tan 22.5^circ (1 - cos 45^circ) / sin 45^circ (1 - 1 / sqrt{2}) / (1 / sqrt{2})
Step 3: Simplify the Expression
Calculate ( 1 - 1 / sqrt{2} ):
1 - 1 / sqrt{2} sqrt{2} / sqrt{2} - 1 / sqrt{2} (sqrt{2} - 1) / sqrt{2}
Substitute this into the tangent formula:
tan 22.5^circ ((sqrt{2} - 1) / sqrt{2}) / (1 / sqrt{2})
This simplifies to:
tan 22.5^circ sqrt{2} - 1
Step 4: Check if ( sqrt{2} - 1 sqrt{3} - 2sqrt{2} )
To check if ( sqrt{2} - 1 sqrt{3} - 2sqrt{2} ), we can set them equal and simplify:
sqrt{2} - 1 sqrt{3} - 2sqrt{2}
Rearranging gives us:
sqrt{2} 2sqrt{2} sqrt{3} 1
This simplifies to:
3sqrt{2} sqrt{3} 1
Now squaring both sides to eliminate the square roots:
3sqrt{2}^2 (sqrt{3} 1)^2
This results in:
18 3 2sqrt{3} 1
Simplifying gives:
18 4 2sqrt{3}
So we have:
14 2sqrt{3}
Dividing both sides by 2:
7 sqrt{3}
This is not a true statement indicating that ( tan 22.5^circ eq sqrt{3} - 2sqrt{2} ).
Alternative Proof Using Trigonometric Identities
Putting ( theta 45^circ ) in the identity:
cos theta frac{1 - tan ^2 frac{theta}{2}}{1 tan ^2 frac{theta}{2}}
Yields:
begin{aligned} frac{1}{sqrt{2}} cos 45^circ frac{1 - tan ^2 frac{45^circ}{2}}{1 tan ^2 frac{45^circ}{2}} Leftrightarrow sqrt{2} - sqrt{2} tan ^2 frac{45^circ}{2} 1 tan ^2 frac{45^circ}{2} Leftrightarrow sqrt{2} - 1 1 sqrt{2} tan ^2 frac{45^circ}{2} Leftrightarrow tan ^2 frac{45^circ}{2} frac{sqrt{2} - 1}{sqrt{2} 1} cdot frac{sqrt{2} - 1}{sqrt{2} - 1} 3 - 2sqrt{2} Leftrightarrow tan frac{45^circ}{2} sqrt{3 - 2sqrt{2}} sqrt{2} - 1 end{aligned}
This further confirms that the correct value is indeed ( tan 22.5^circ sqrt{2} - 1 ).
Conclusion
The statement that ( tan 45^circ / 2 sqrt{3} - 2sqrt{2} ) is incorrect. The correct value is ( tan 22.5^circ sqrt{2} - 1 ).
Keywords: trigonometric identities, half-angle formula, tangent of 45 degrees
-
Can I Still Work at NASA or SpaceX With a Mechanical Engineering Degree?
Can I Still Work at NASA or SpaceX With a Mechanical Engineering Degree? Yes, yo
-
The Evolution and Decline of Peer-to-Peer Technologies: eDonkey and eMule
The Evolution and Decline of Peer-to-Peer Technologies: eDonkey and eMule Peer-t