Technology
Solving Differential Equations of the Form ( frac{dy}{dx} P(x)y Q(x) ): A Step-by-Step Guide
Solving Differential Equations of the Form ( frac{dy}{dx} P(x)y Q(x) ): A Step-by-Step Guide
Introduction
In the field of mathematics, differential equations are central to modeling complex systems in various scientific and engineering disciplines. One common form of these equations is ( frac{dy}{dx} P(x)y Q(x) ). This article will walk through the process of solving such equations using the integrating factor method, providing a clear and detailed explanation.
Understanding the Given Problem
Consider the differential equation:
$$ x^2 1 frac{dy}{dx} - 4xy frac{1}{x^3} 1 $$
To solve this, we first rewrite it in the standard form ( frac{dy}{dx} P(x)y Q(x) ):
$$ frac{dy}{dx} - frac{4xy}{x^2 1} frac{1}{x^3} 1 $$
Identifying ( P(X) ) and ( Q(X) )
From the standard form, we can identify ( P(x) ) and ( Q(x) ) as:
$$ P(x) -frac{4x}{x^2 1} $$
$$ Q(x) frac{1}{x^3} 1 $$
The Integrating Factor (I.F.) Method
The integrating factor method involves the following steps:
Step 1: Calculate the Integrating Factor (I.F.)
The I.F. is given by the exponential of the integral of ( P(x) ):
$$ I.F. e^{int P(x) , dx} $$
Substituting ( P(x) -frac{4x}{x^2 1} ):
$$ I.F. e^{int -frac{4x}{x^2 1} , dx} $$
We can simplify the integral:
$$ int -frac{4x}{x^2 1} , dx -2 int frac{2x}{x^2 1} , dx $$
Let ( u x^2 1 ), then ( du 2x , dx ):
$$ -2 int frac{1}{u} , du -2 ln |u| -2 ln |x^2 1| ln (x^2 1)^{-2} $$
Thus, the integrating factor is:
$$ I.F. e^{ln (x^2 1)^{-2}} (x^2 1)^{-2} frac{1}{(x^2 1)^2} $$
Step 2: Apply the Integrating Factor to the Equation
Multiplying both sides of the differential equation by the I.F., we get:
$$ frac{1}{(x^2 1)^2} cdot frac{dy}{dx} - frac{4xy}{x^2 1} cdot frac{1}{(x^2 1)^2} frac{1}{x^3 1} cdot frac{1}{(x^2 1)^2} frac{1}{(x^2 1)^2} $$
$$ frac{1}{(x^2 1)^2} cdot frac{dy}{dx} - frac{4xy}{(x^2 1)^3} frac{1}{(x^3 1)(x^2 1)^2} frac{1}{(x^2 1)^2} $$
This can be simplified to:
$$ frac{1}{(x^2 1)^2} cdot frac{dy}{dx} frac{d}{dx} left( -frac{2y}{(x^2 1)} right) frac{1}{x^2 1} $$
Step 3: Integrate Both Sides
Using the linearity property of the integral, we integrate:
$$ y (x^2 1)^{-2} int frac{1}{x^2 1} , dx C $$
The integral of ( frac{1}{x^2 1} ) is ( tan^{-1} x ):
$$ y (x^2 1)^{-2} tan^{-1} x C $$
Step 4: Solve for ( y )
Multiplying both sides by ( (x^2 1)^2 ), we get the general solution:
$$ y (x^2 1)^2 left( tan^{-1} x C right) $$
Conclusion
Solving differential equations of the form ( frac{dy}{dx} P(x)y Q(x) ) using the integrating factor method is a systematic and powerful approach. By identifying ( P(x) ) and ( Q(x) ) and calculating the integrating factor, we can transform the equation into a more manageable form, allowing us to find the general solution.