Technology
Solving Equations: p^2 3p - 1 and p^2 - 1/p^2
Solving Equations: p2 3p - 1 and p2 - 1/p2
In this article, we will delve into the process of solving a quadratic equation and finding the value of a specific expression based on it. The equation we will be working with is ( p^2 3p - 1 ). We will explore various steps and methods to find out the value of ( frac{p^2 - 1}{p^2} ) and related expressions.
Problem Overview
Given the equation ( p^2 3p - 1 ), we need to find the value of ( frac{p^2 - 1}{p^2} ). Let's break this down into manageable steps and find the solution.
Step-by-Step Solution
Step 1: Solve the Quadratic Equation
First, we rewrite the given equation in the standard quadratic form:
[ p^2 - 3p 1 0 ]
To solve for ( p ), we use the quadratic formula: ( p frac{-b pm sqrt{b^2 - 4ac}}{2a} ), where ( a 1 ), ( b -3 ), and ( c 1 ).
Substituting these values, we get:
[ p frac{3 pm sqrt{(-3)^2 - 4(1)(1)}}{2(1)} frac{3 pm sqrt{9 - 4}}{2} frac{3 pm sqrt{5}}{2} ]
Hence, the solutions for ( p ) are:
[ p frac{3 sqrt{5}}{2} quad text{or} quad p frac{3 - sqrt{5}}{2} ]
Step 2: Evaluate ( p^2 - frac{1}{p^2} )
Now let's find the value of ( frac{p^2 - 1}{p^2} ) and ( p^2 - frac{1}{p^2} ).
Starting with ( p^2 - frac{1}{p^2} ), we use the identity:
[ frac{p^2 - 1}{p^2} 1 - frac{1}{p^2} ]
To find ( frac{1}{p^2} ), we note that:
[ p^2 3p - 1 implies p^2 - 1 3p implies 1 - frac{1}{p^2} frac{3p}{p^2} frac{3}{p} ]
So, ( frac{p^2 - 1}{p^2} 1 - frac{3}{p} ).
Next, we calculate ( frac{1}{p^2} ) directly:
[ frac{1}{p^2} frac{1}{(3p - 1)} ]
Combining the above, we get:
[ p^2 - frac{1}{p^2} p^2 - left( frac{1}{p^2} right) frac{p^4 - 1}{p^2} ]
Step 3: Substitute and Simplify
Given ( p^2 3p - 1 ), we substitute this into the expression for ( p^4 - 1 ):
[ p^4 (p^2)^2 (3p - 1)^2 9p^2 - 6p 1 ]
Thus, ( p^4 - 1 9p^2 - 6p ). Hence,
[ frac{p^4 - 1}{p^2} frac{9p^2 - 6p}{p^2} 9 - frac{6p}{p^2} 9 - frac{6}{p} ]
Since ( p frac{3 pm sqrt{5}}{2} ), we have:
[ frac{1}{p} frac{2}{3 pm sqrt{5}} ]
Multiplying the numerator and denominator by the conjugate to rationalize:
[ frac{1}{p} frac{2(3 - sqrt{5})}{(3 sqrt{5})(3 - sqrt{5})} frac{2(3 - sqrt{5})}{9 - 5} frac{2(3 - sqrt{5})}{4} frac{3 - sqrt{5}}{2} ]
Substituting back:
[ 9 - frac{6}{p} 9 - 3(3 - sqrt{5}) 9 - 9 3sqrt{5} 3sqrt{5} ]
Hence, the value of ( frac{p^2 - 1}{p^2} ) is:
[ 1 - frac{3}{p} 1 - 3left( frac{3 - sqrt{5}}{2} right) 1 - frac{9 - 3sqrt{5}}{2} frac{2 - 9 3sqrt{5}}{2} frac{-7 3sqrt{5}}{2} ]
And thus, ( p^2 - frac{1}{p^2} 3sqrt{5} ) and ( frac{p^2 - 1}{p^2} frac{-7 3sqrt{5}}{2} ).
Conclusion
In conclusion, we have demonstrated how to solve the quadratic equation ( p^2 3p - 1 ) and derive the value of ( frac{p^2 - 1}{p^2} ) from it. Through careful algebraic manipulation, we found that ( p^2 - frac{1}{p^2} 3sqrt{5} ).
Understanding these steps provides insight into how to handle quadratic equations and related expressions, a fundamental skill in algebra and higher mathematics.
-
Understanding Heat Transfer Oil: Properties and Applications
Understanding Heat Transfer Oil: Properties and Applications Heat transfer oil,
-
Effective Ways to Prevent Spam on HTML Forms and Blocking Access to Specific Countries
Effective Ways to Prevent Spam on HTML Forms and Blocking Access to Specific Cou