Technology
Solving the Integral ( int frac{1}{x sqrt{4x^2 16}} dx ) Using Trigonometric Substitution
Solving the Integral ( int frac{1}{x sqrt{4x^2 16}} dx ) Using Trigonometric Substitution
This article will walk you through the process of evaluating the integral ( int frac{1}{x sqrt{4x^2 16}} , dx ) using trigonometric substitution, a powerful technique in calculus. This method is especially useful for integrals involving roots of quadratic expressions.
Step 1: Simplify the Expression
First, we simplify the expression under the square root.
The given integral is:
[ int frac{1}{x sqrt{4x^2 16}} , dx ]Notice that:
[ 4x^2 16 4x^2 4 ]So, we can rewrite the integral as:
[ int frac{1}{x sqrt{4x^2 4}} , dx int frac{1}{x cdot 2 sqrt{x^2 1}} , dx frac{1}{2} int frac{1}{x sqrt{x^2 1}} , dx ]Step 2: Trigonometric Substitution
To handle the term ( sqrt{x^2 1} ), we use the substitution:
[ x tan theta quad Rightarrow quad dx sec^2 theta , dtheta ]This gives us:
[ sqrt{x^2 1} sqrt{tan^2 theta 1} sec theta ]Step 3: Substitute into the Integral
Substituting ( x ) and ( dx ) into the integral, we get:
[ frac{1}{2} int frac{1}{tan theta cdot 2 sec theta} cdot sec^2 theta , dtheta frac{1}{2} int frac{sec theta}{2 tan theta} , dtheta frac{1}{4} int frac{sec theta}{tan theta} , dtheta ]Recall that:
[ frac{sec theta}{tan theta} csc theta ]So the integral simplifies to:
[ frac{1}{4} int csc theta , dtheta ]Step 4: Integrate
The integral of ( csc theta ) is:
[ int csc theta , dtheta -ln |csc theta - cot theta| C ]Thus:
[ frac{1}{4} int csc theta , dtheta -frac{1}{4} ln |csc theta - cot theta| C ]Step 5: Substitute Back
Now we need to convert back to ( x ). From our substitution ( x tan theta ), we have:
[ tan theta frac{x}{1} quad cot theta frac{1}{tan theta} frac{1}{x} quad csc theta frac{1}{sin theta} sqrt{cot^2 theta 1} sqrt{1 frac{1}{x^2}} frac{sqrt{x^2 1}}{x} ]Therefore:
[ csc theta - cot theta frac{sqrt{x^2 1}}{x} - frac{1}{x} frac{sqrt{x^2 1} - 1}{x} ]Putting it all together, we have:
[ -frac{1}{4} ln left| frac{sqrt{x^2 1} - 1}{x} right| C ]Final Result
The integral ( int frac{1}{x sqrt{4x^2 16}} , dx ) evaluates to:
[ -frac{1}{4} ln left| frac{sqrt{x^2 1} 1}{x} right| C ]This solution method uses trigonometric substitution and integration by parts, providing a detailed guide on how to tackle similar integrals involving roots of quadratic expressions.