TechTorch

Location:HOME > Technology > content

Technology

Transforming Equations to Polar Form: A Comprehensive Guide

April 03, 2025Technology2921
How to Transform Equations to Their Polar Form In mathematics, transfo

How to Transform Equations to Their Polar Form

In mathematics, transforming equations to their polar form is a common and useful technique. This process allows us to analyze and solve problems involving polar coordinates more effectively. Let's explore how to transform the equations (x^3 xy^2 - 6x^2 - 2y^2 0) and (x^2 y^2 - 8x^2 - 2x^2 - 2y^2 0) into their polar forms.

Transformation of the First Equation

Consider the equation:

$$x^3 xy^2 - 6x^2 - 2y^2 0$$

First, let's simplify this equation:

$$x^3 xy^2 2y^2 - xy^2$$

$$x^3 xy^2 2 - xy^2$$

$$y^2 frac{x^2 cdot x cdot 6}{2 - x}$$

From the above, we have:

$$frac{x^6}{2 - x} geq 0 rightarrow begin{cases}x^6 geq 6 2 - x eq 0end{cases}$$

$$-6 leq x^2$$

Now, let's transform the equation into polar form. Assuming (x r cos theta) and (y r sin theta), we have:

$$r cos theta cdot sin^2 theta frac{r cos theta cdot r sin theta cdot 6}{2 - r cos theta}$$

To solve for (r), we get:

$$sin^2 theta frac{cos^2 theta cdot r sin theta cdot 6}{2 - r cos theta}$$

$$tan^2 theta cdot (2 - r cos theta) r cdot cos theta cdot 6$$

$$2 tan^2 theta - r cos theta cdot tan^2 theta r cos theta cdot 6$$

$$2 tan^2 theta - 6 r cos theta cdot (r cos theta tan^2 theta)$$

$$r frac{2 tan^2 theta - 6}{cos theta cdot (r cos theta tan^2 theta)}$$

$$r frac{2 tan^2 theta - 6}{cos theta cdot (1 tan^2 theta)}$$

$$r frac{2 tan^2 theta - 6}{cos theta cdot sec^2 theta}$$

$$r 2 cos theta tan^2 theta - 3$$

$$r 2 cos theta [sec^2 theta - 1] - 3$$

$$r 2 cos theta sec^2 theta - 4$$

$$r 2 sec theta - 8 cos theta$$

The plot for the polar form looks like this:

Transformation of the Second Equation

Now let's look at a second equation:

$$x^2 y^2 - 8x^2 - 2x^2 - 2y^2 0$$

First, simplify the equation:

$$x^2 y^2 - 8x^2 - 2x^2 - 2y^2 -9x^2 - y^2 0$$

Using the polar form (x r cos theta) and (y r sin theta), we can transform the equation into:

$$r^2 cos^2 theta r^2 sin^2 theta - 8r^2 cos^2 theta - 2r^2 sin^2 theta 0$$

$$r^2 (cos^2 theta sin^2 theta - 8 cos^2 theta - 2 sin^2 theta) 0$$

$$r^2 (1 - 8 cos^2 theta - 2 sin^2 theta) 0$$

To solve for (r), we get:

$$1 - 8 cos^2 theta - 2 sin^2 theta 0$$

$$1 - 8 cos^2 theta - 2 sin^2 theta 0$$

Since the constants don’t allow for a straightforward solution, we have:

$$r 0$$

Hence, the second equation in polar form is represented by the point (0, 0).